Review article

Mechanical chest compression devices at in-hospital cardiac arrest: A systematic review and meta-analysis

Keith Couper a,b, Joyce Yeung b,c, Thomas Nicholson b, Tom Quinn d, Ranjit Lall a, Gavin D. Perkins a,b,*

a Warwick Medical School, University of Warwick, Coventry, UK
b Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Heart of England NHS Foundation Trust, Birmingham, UK
c School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
d Faculty of Health, Social Care and Education, Kingston University London and St. George’s, University of London, London, UK

A R T I C L E I N F O

Article history:
Received 26 January 2016
Accepted 7 March 2016

Keywords:
Cardiac arrest
In-hospital cardiac arrest
Advanced life support
Mechanical chest compression device

A B S T R A C T

Aim: To summarise the evidence in relation to the routine use of mechanical chest compression devices during resuscitation from in-hospital cardiac arrest.

Methods: We conducted a systematic review of studies which compared the effect of the use of a mechanical chest compression device with manual chest compressions in adults that sustained an in-hospital cardiac arrest. Critical outcomes were survival with good neurological outcome, survival at hospital discharge or 30-days, and short-term survival (ROSC/1-h survival). Important outcomes included physiological outcomes. We synthesised results in a random-effects meta-analysis or narrative synthesis, as appropriate. Evidence quality in relation to each outcome was assessed using the GRADE system.

Data sources: Studies were identified using electronic databases searches (Cochrane Central, MEDLINE, EMBASE, CINAHL), forward and backward citation searching, and review of reference lists of manufacturer documentation.

Results: Eight papers, containing nine studies [689 participants], were included. Three studies were randomised controlled trials. Meta-analyses showed an association between use of mechanical chest compression device and improved hospital or 30-day survival (odds ratio 2.34, 95% CI 1.42–3.85) and short-term survival (odds ratio 2.14, 95% CI 1.11–4.13). There was also evidence of improvements in physiological outcomes. Overall evidence quality in relation to all outcomes was very low.

Conclusions: Mechanical chest compression devices may improve patient outcome, when used at in-hospital cardiac arrest. However, the quality of current evidence is very low. There is a need for randomised trials to evaluate the effect of mechanical chest compression devices on survival for in-hospital cardiac arrest.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Each year in the UK, approximately 35,000 patients sustain an in-hospital cardiac arrest, of which only 18.4% survive to hospital discharge. 1 The quality of chest compressions is an important modifiable determinant of survival following cardiac arrest. 2,3

The challenge of delivering high-quality manual chest compressions has driven interest in the use mechanical chest compression devices, which provide chest compressions of consistent rate and depth. 4,5 Potential ancillary benefits of such devices include the release of a rescuer to perform other interventions. 5

Research to-date has focussed mainly on the use of the mechanical devices in the pre-hospital setting. 5 Three large randomised controlled trials of mechanical devices in the pre-hospital setting have recently been published. 6,9,10 Meta-analysis of data from these trials has shown that the routine use of mechanical chest compression devices, compared with manual chest compressions, does not improve survival for out-of-hospital cardiac arrest. 6,9,10 In 2015, on the basis of published evidence the International Liaison
Committee for Resuscitation recommended against the routine use of mechanical chest compression devices in out-of-hospital cardiac arrest.11

In contrast, the routine deployment of mechanical devices in the in-hospital setting has received limited attention.1 In out-of-hospital cardiac arrest, devices are typically deployed more than 15 min after cardiac arrest due to the inherent delays in EMS teams reaching the scene of the collapse.7 Resuscitation is attempted by small teams who often have infrequent exposure to cardiac arrest, which may lead to harmful unrecognised prolonged interruptions in chest compressions.12-16 By contrast, the hospital setting allows for earlier deployment of devices by larger teams, who are likely to have greater exposure to cardiac arrest events, and so may deploy devices more effectively.

To date, systematic reviews of mechanical devices have tended to include both in-hospital and pre-hospital studies, or focussed solely on pre-hospital studies.9,10,17-19 A single systematic review of mechanical devices for in-hospital cardiac arrests has been published but the value of its findings are limited by its narrow approach to study identification and inclusion of both case reports and case series.20 The aim of our review is to summarise evidence in relation to the use of mechanical chest compression devices for in-hospital cardiac arrest.

Methods

We undertook this review in accordance with a protocol which was registered with the PROSPERO database on 14th May 2015 (registration number: CRD42015020220).

Search strategy

We conducted searches of the following databases using a combination of keywords and MeSH terms: Cochrane Central Register of Controlled Trials; Ovid MEDLINE; Ovid EMBASE; and CINAHL. The search strategy, modelled on that used in the Cochrane review, included terms for the condition (e.g. cardiac arrest), the treatment (e.g. chest compression$) and intervention (compression$ ADJ9 devices$).19 An example search strategy is included in the electronic supplement. In addition, we interrogated trial registries, reference lists of works produced as part of the 2010 and 2015 ILCOR evidence evaluation process, and resources provided on manufacturer’s websites. Forward and backward citation searching of included studies and key systematic reviews was also undertaken.

Following duplicate removal, titles were screened independently by two authors and obviously irrelevant results removed. This process was then repeated for abstract screening. The full-text of potentially relevant titles was obtained, and assessed independently by the same two authors in an unblinded manner against pre-determined eligibility criteria using a proforma.

Inclusion/exclusion criteria

We included all published primary research studies which compared the use of a mechanical chest compression device with manual chest compressions in human adults (≥16 years of age) that suffered an in-hospital cardiac arrest. Studies were included if they reported quantitative outcome data for each treatment group for at least one of the pre-determined outcome measures. Studies undertaken in the emergency department were excluded. No restriction on study design, publication date or language was imposed. Studies published only as abstracts were eligible for inclusion.

Outcomes

The following outcomes were defined as critical outcomes in accordance with GRADE: survival with good neurological outcome; patient survival to hospital discharge or at 30-days; short term survival (e.g. return of spontaneous circulation (ROSC), survival to 1 h after ROSC), CPR quality and physiological outcomes (e.g. chest compression rate, coronary perfusion pressure), and safety outcomes (e.g. visceral organ damage) were considered important outcomes. Outcomes were defined in accordance with Utstein consensus definitions.21

Quality assessment

The risk of bias in individual studies was independently reviewed by two authors using the Cochrane risk of bias assessment for randomised controlled trials or the Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment tool for observational studies.22,23 For each outcome, we used the GRADE system and associated software (GRADEpro. [Computer program]. Version 3.2 for Windows. Jan Brozek, Andrew Oxman, Holger Schüenemann, 2008) to assess overall evidence quality in relation to each outcome or outcome group.24

The GRADE system categorises evidence quality for each outcome as either very low, low, moderate, or high.25 Initially, the quality of evidence for outcome is initially rated as high (for randomised controlled trials) or low (for observational studies). The rating may then downgraded or upgraded. Reasons for downgrading include risk of bias or indirectness, while reasons for upgrading include evidence of a dose-response or where the effect-size is large. The GRADE system was the approach used in the 2015 International Liaison Committee on Resuscitation evidence evaluation process.26

Data extraction and analysis

Data were extracted from index studies using a generic form that captured key study methodological information, intervention details, baseline group characteristics, and study results. Data were extracted by one reviewer, and then checked for accuracy by another reviewer. We undertook meta-analyses in Revman software using a random-effects model (Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Meta-analysis results are presented as odds ratio (OR) and 95% confidence interval (95% CI) for dichotomous outcomes. Meta-analyses report the overall effect size, as well as the separate effect sizes for randomised controlled trials and observational studies. The Higgins I² statistic is used to measure consistency of results between trials and for any sub-group differences.27 Where a meta-analysis was not appropriate, results are described in a narrative synthesis.

Results

Electronic database searches identified 2659 citations. A further 481 citations were identified through citation tracking, searches of trial registries, and review of manufacturer and ILCOR resources. Following duplicate removal and screening of titles and abstracts, we reviewed the full-text of 84 citations. Eight papers were identified as meeting inclusion criteria (Fig. 1).28-35 Despite the large number of citations identified through other sources, all included papers were identified through electronic database searches. The paper by Halperin et al. describes two distinct studies (a crossover trial and a randomised controlled trial), so for clarity it is treated...
as two distinct studies in this review.30 The paper by Lu et al. was translated by one of the authors to facilitate inclusion in this review.31

Of the nine included studies, three were randomised controlled studies,28,30,31 and the remainder were observational studies.29,30,32–35 Sample size ranged from 16 to 285 participants. Six studies were conducted in North America,28,30,33–35 with one each of the remaining three being conducted in the UK,32 China,31 and Brazil.23 Studies used a range of mechanical devices, including load-distributing band devices (n = 2),29,32 pneumatic vest devices (n = 2),30 piston-type devices (n = 3),28,31,35 the LUCAS device (n = 1),34 and one study where the type of device is not reported.33 Key characteristics of included studies are summarised in Table 1.

The overall quality of studies was low. Risks of bias summary tables are included as Tables 2 and 3 for randomised controlled trials and observational studies respectively. Randomised controlled trials typically gave limited information about key methodological elements, such as allocation generation, concealment and the blinding of assessors. Observational studies were typically subject to a high risk of bias due to the measurement of exposure and outcome, and the risk of confounding. Of particular note was the study by Spiro et al, where treatment with a mechanical device was restricted to cardiology patients, but survival was compared with all other in-hospital cardiac arrest patients, irrespective of cardiac arrest aetiology.32

Critical outcomes

For the critical outcome of neurological outcome at hospital discharge, none of the included studies report data.

Five studies (two randomised controlled trials [200 participants], three observational studies [390 participants]) report the critical outcome of survival at hospital discharge or 30-days.28,31–34 A very-low quality of evidence (downgraded for risk of bias and indirectness) showed an association between the use of a mechanical chest compression device and improved hospital survival (OR 2.34, 95% CI 1.42–3.85, p < 0.001) (Fig. 2 and Table 4). Overall, study heterogeneity was low (I² = 0%). The estimate of treatment effect was similar between randomised controlled trials and observational studies (OR 2.60, 95% CI 1.25–5.43 vs OR 2.14, 95% CI 1.09–4.21, p = 0.70, I² = 0%).

Four studies (three randomised controlled trials [234 participants], one observational study [16 participants]) report the critical outcome of short-term survival.28,30,31,33 Three studies reported this as return of spontaneous circulation and one study reported it as one-hour survival. Evidence quality was very low (downgraded for risk of bias and indirectness) (Table 4). There was evidence of an association between use of a mechanical chest compression device and improved short-term survival (OR 2.14, 95% CI 1.11–4.13, p = 0.02) (Fig. 3). Overall, there was low study heterogeneity (I² = 19%). The estimate of treatment effect was markedly different between the three randomised controlled trials and the single observational study, although this did not reach

Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Study setting</th>
<th>Mechanical device</th>
<th>Population</th>
<th>Key outcomes</th>
<th>Industry funding/support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor 1978</td>
<td>RCT</td>
<td>USA</td>
<td>Thumper (piston) device</td>
<td>50 IHCA patients. CA duration < 10 min.</td>
<td>Survival (1-h/24-h/discharge); patient safety; Blood gas; haemodynamic pressures</td>
<td>Manufacturer supplied device</td>
</tr>
<tr>
<td>Halperin 1993a</td>
<td>Crossover study</td>
<td>USA</td>
<td>Pneumatic vest device</td>
<td>15 IHCA patients. CA duration > 20min.</td>
<td>Survival</td>
<td>9 authors report equity interest in company with device patent</td>
</tr>
<tr>
<td>Halperin 1993b</td>
<td>RCT</td>
<td>USA</td>
<td>Pneumatic vest device</td>
<td>34 IHCA patients. CA duration < 20 min.</td>
<td>Survival (ROSC/6-h/24-h); blood gas; patient safety; Haemodynamic pressures</td>
<td>As Halperin 1993a</td>
</tr>
<tr>
<td>Timmerman 2004</td>
<td>Crossover study</td>
<td>Brazil</td>
<td>Load-distributing band device</td>
<td>16 IHCA patients. CA duration > 10 min.</td>
<td>Survival</td>
<td>Study financial support by device manufacturer. One authors reports financial interest in device manufacturer.</td>
</tr>
<tr>
<td>Lu 2010</td>
<td>RCT</td>
<td>China</td>
<td>Thumper (piston) device</td>
<td>150 IHCA patient</td>
<td>Survival (ROSC/discharge)</td>
<td>No</td>
</tr>
<tr>
<td>Gutteridge 2012</td>
<td>Cohort study</td>
<td>USA</td>
<td>LUCAS</td>
<td>89 IHCA patients</td>
<td>Survival (discharge)</td>
<td>No</td>
</tr>
<tr>
<td>Parnia 2014</td>
<td>Cohort study</td>
<td>USA</td>
<td>Lifestat (piston)</td>
<td>34 IHCA patients</td>
<td>Cerebral oxygenation</td>
<td>No</td>
</tr>
<tr>
<td>Retzer 2015</td>
<td>Cohort study</td>
<td>USA</td>
<td>Not stated</td>
<td>16 patients with CA in CCL</td>
<td>Survival (ROSC/discharge)</td>
<td>One author is employed by a device manufacturer</td>
</tr>
<tr>
<td>Spiro 2015</td>
<td>Cohort study</td>
<td>UK</td>
<td>Autopulse</td>
<td>285 IHCA patients</td>
<td>Survival (discharge)</td>
<td>No</td>
</tr>
</tbody>
</table>

RCT – randomised controlled trial; IHCA – in-hospital cardiac arrest; CA – cardiac arrest; ROSC – return of spontaneous circulation; COI – conflict of interest.
Table 2
risk of bias- randomised controlled studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation: generation</th>
<th>Allocation: concealment</th>
<th>Blinding: participants</th>
<th>Blinding: assessors</th>
<th>Outcome: complete</th>
<th>Outcome: selective</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor 1978</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High</td>
<td>Unclear</td>
<td>High</td>
<td>Unclear</td>
<td>High</td>
</tr>
<tr>
<td>Halperin 1993(b)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear</td>
<td>High</td>
</tr>
<tr>
<td>Lu 2010</td>
<td>Unclear</td>
<td>High</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Table 3
risk of bias- observational studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Eligibility criteria</th>
<th>Exposure/outcome</th>
<th>Confounding</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halperin 1993(a)</td>
<td>Unclear</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Timerman 2004</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Guttridge 2012</td>
<td>Low</td>
<td>High</td>
<td>Unclear</td>
<td>Low</td>
</tr>
<tr>
<td>Parnia 2014</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Retzer 2015</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Spiro 2015</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mechanical CC Events</th>
<th>Manual CC Events</th>
<th>Odds Ratio (M-H, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor 1978</td>
<td>3 24 26 1.71 (0.26, 11.28) 1978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu 2010</td>
<td>25 76 11 74 0.1 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>90 100 45.7 2.60 (1.25, 5.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>28 13 70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; CH² = 0.22, df = 1 (P = 0.64); P = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.55 (P = 0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mechanical CC Events</th>
<th>Manual CC Events</th>
<th>Odds Ratio (M-H, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halperin 1993(b)</td>
<td>14 51 8 1.42 (0.53, 3.83) 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timerman 2004</td>
<td>7 25 28 260 270 3.22 (1.24, 8.39) 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gutteridge 2012</td>
<td>1 11 0 5 2.2 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>18 303 54.3 2.14 (1.09, 4.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>22 36 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; CH² = 1.42, df = 2 (P = 0.49); P = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.21 (P = 0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>187 403 100 2.34 (1.42, 3.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>50 49 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; CH² = 1.77, df = 4 (P = 0.78); P = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.35 (P = 0.0009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroups differences: CH² = 0.15, df = 1 (P = 0.70), P = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Mechanical v manual chest compressions, outcome: survival to hospital discharge.

statistical significance (OR 1.94, 95% CI 1.14–3.30 v OR 18.33, 95% CI 0.81–416.04, p = 0.16, I² = 48.2%).

Important outcomes

Four studies reported the important outcome of physiological outcome. Overall, evidence quality was very low (downgraded for risk of bias and indirectness) (Table 4). Included outcomes were blood gas values (2 studies), haemodynamic pressures (2 studies), and cerebral oxygenation (one study).

Blood gas values (pH, partial pressure of carbon dioxide, partial pressure of oxygen) were reported in both the crossover study and randomised controlled trial reported by Halperin et al. In neither study was there evidence of a statistically significant difference in
Table 4
GRADE table.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks(^a) (95% CI)</th>
<th>Relative effect</th>
<th>No of participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk Control</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical chest compressions v Manual chest compressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival (hospital discharge/30-days)</td>
<td>Study population</td>
<td>122 per 1000 (164–348)</td>
<td>245 per 1000 (164–348)</td>
<td>OR 2.34 (1.42–3.85)</td>
<td>590 (5 studies)</td>
</tr>
<tr>
<td></td>
<td>Moderate 108 per 1000</td>
<td>221 per 1000 (147–318)</td>
<td>221 per 1000 (147–318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival (ROSC/1-h)</td>
<td>Study population</td>
<td>352 per 1000 (376–691)</td>
<td>537 per 1000 (376–691)</td>
<td>OR 2.14 (1.11–4.13)</td>
<td>250 (4 studies)</td>
</tr>
<tr>
<td></td>
<td>Moderate 371 per 1000</td>
<td>558 per 1000 (396–709)</td>
<td>558 per 1000 (396–709)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiological outcomes</td>
<td>Study population</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td>4 (studies)</td>
</tr>
<tr>
<td></td>
<td>See comment</td>
<td>See comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety outcomes</td>
<td>Study population</td>
<td>Not estimable</td>
<td></td>
<td></td>
<td>2 (studies)</td>
</tr>
<tr>
<td></td>
<td>See comment</td>
<td>See comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: Confidence interval; RR: Risk ratio; OR: Odds ratio.

\(^b\) Combination of randomised controlled trials and observational studies- all studies associated with medium-high risk of bias.

\(^c\) Studies tended to use mechanical devices that are no longer marketed and/or used old resuscitation guidelines and/or recruited predominantly cardiology patients.

Discussion

In this systematic review and meta-analysis, we included data from nine studies. None of the papers reported neurological outcomes amongst survivors at any time point. In relation to the critical outcome of survival at hospital discharge or 30-days, there was evidence of an association between use of a mechanical chest compression device and improved survival (OR 2.34, 95% CI 1.42–3.85, p < 0.001). We also found evidence of improved short-term survival and physiological outcomes. Patient safety outcomes were infrequently reported.

Evidence quality, as assessed using the GRADE framework, was categorised as very low in relation to all outcomes. As such, there is considerable uncertainty about the treatment effects described and the results of this review should be interpreted with significant caution. The very low categorisation of evidence quality results from the high risk of bias of most included studies and indirectness of evidence. This indirectness stems from: the variety of mechanical devices used, of which some are no longer marketed; the 35-year period over which studies were undertaken, such that the resuscitation practice in some studies was markedly different to resuscitation practice of today; and the focus in some studies on patients in the cardiac catheter laboratory.

Taken at face value, however, the findings of this review differ markedly from systematic reviews of mechanical devices for...
out-of-hospital cardiac arrest. Gates et al. meta-analysed data from five randomised controlled trials, which enrolled a total of 12,206 participants, and found that use of a mechanical device did not improve hospital or 30-day survival (odds ratio 0.89, 95% CI 0.77–1.02), or any other outcome.3 Bonnes et al. undertook a broader review that combined the same five randomised controlled trials with 15 observational studies (n = 9157).10 In the review, data from observational studies showed an association between the use of a mechanical device and improved short-term outcome (ROSC, hospital admission), but this apparent benefit was not observed in analyses of longer-term outcomes to hospital discharge, or in analyses of randomised controlled trials.

There are two possible reasons to explain this apparent difference in findings between this review of in-hospital cardiac arrest studies and previous reviews of out-of-hospital cardiac arrest studies. Firstly, as per the GRADE process, treatment effects for very low quality evidence should be considered to be uncertain.24 Data from other disease areas shows that studies at increased risk of bias may over-estimate or under-estimate the treatment effect.36–38

As such, further high-quality research might show that, as is the case of out-of-hospital cardiac arrest, the routine deployment of mechanical chest compression devices for in-hospital cardiac arrest does not improve patient outcomes, compared with manual chest compressions.

The second explanation is that mechanical devices are more effective than manual chest compressions in the hospital setting. The ability to deploy devices earlier during the cardiac arrest by a larger team with greater exposure to cardiac arrest events may result in more effective deployment. Interestingly, a meta-regression in the review by Bonnes et al. suggests that mechanical devices are more effective in the pre-hospital setting when they are deployed earlier during the cardiac arrest event.10 Importantly, data on chest compression pauses associated with device deployment are rarely reported in studies of mechanical devices, but there is evidence from observational studies that well-trained teams deploy devices more effectively.12,39,40 Furthermore, manual chest compressions in the hospital setting are often challenging to deliver effectively as the patient is typically positioned on a compressible mattress which absorbs up to 40% of compression force.41 In this setting, mechanical devices enable consistent high-quality chest compressions to be delivered, irrespective of the underlying surface.

Prior to this review, a single systematic review of the use of mechanical devices specifically for in-hospital cardiac arrest had been published.42 This review, published in 2015, included 14 papers, of which nine were case reports or case series. Furthermore, the review adopted a relatively limited search strategy, with only 141 papers identified in electronic database searches, and narrow inclusion criteria. A single paper overlaps both that review and this review. Overall, survival following treatment with a mechanical chest compression device was reported to be 39%. However, the nature of included studies meant that no manual chest compression comparator could be reported and the reported survival for the mechanical chest compression group is likely to be subject to a very high risk of selection bias.

In this review, we excluded emergency department (ED) studies. There were two key reasons for this decision. Firstly, emergency department studies typically include out-of-hospital cardiac arrest patients that are transported in cardiac arrest. This patient group typically has a poor outcome and deployment of a mechanical device on ED admission will likely be too late to have a measurable effect on outcome.42 Secondly, we have suggested that one reason for mechanical devices being more effective for in-hospital cardiac arrest is the compressibility of underlying mattress. However, ED cardiac arrest patients are usually treated on a trolley stretcher that absorbs less compression force than a mattress.43

This exclusion of emergency department studies meant that some informative studies were not included. Ong et al. undertook a large before/after study (n = 1011) which found improved survival with good neurological outcome following the introduction of a mechanical chest compression device in the ED.44 However, the increased incidence of ED, rather than out-of-hospital, cardiac arrest in the second phase of the study together with other significant baseline differences makes it difficult to reliably interpret these data. Another important excluded paper was the report of Koster et al.’s two parallel non-inferiority randomised controlled trials, which had the primary outcome of visceral injury.45 The study found that the LUCAS device (Physio-control/Jolife AB, Lund, Sweden) did not cause more injury than the manual chest control, but an increase in injury could not be ruled out in relation to the AUTOPULSE device (Zoll Medical Corporation, Chelmsford, Massachusetts).

Our review has a number of limitations. Firstly, as noted above, the risk of bias of index studies meant that evidence quality in relation to all outcomes was categorised as very low. Secondly, the size of index studies was small, producing an overall sample size of 689 participants. In contrast, the review by Gates et al. of out-of-hospital cardiac arrest included data from over 12,000 participants.3 Thirdly, our decision to meta-analyse data may be questioned, given marked clinical heterogeneity between index studies. However, we noted overall statistical heterogeneity for each meta-analysis, as measured by the I² statistic, was low or moderate and we chose a random-effects model to account for differences in effect size between studies.27,46 The authors of the Cochrane review on mechanical chest compression devices chose not to meta-analyse studies due to concerns about clinical heterogeneity, although that review included both out-of-hospital and in-hospital studies.19 Finally, it is important that none of the included studies reported data on important outcomes, such as survival beyond hospital discharge and survival with good neurological outcome. Survival with good neurological outcome is often not reported in cardiac arrest trials, but is considered an important outcome by both clinicians and patients.37–40 Importantly, two pre-hospital mechanical chest compression studies have reported worse neurological outcome in groups treated with a mechanical chest compression device, so recording this important outcome should be considered essential in future trials.8,30

Conclusion

In this review, our meta-analysis found an association between improved hospital or 30-day survival and treatment with a mechanical chest compression device for in-hospital cardiac arrest. We also found evidence of improved short-term survival and improved physiological outcomes when a mechanical device was used. However, no study included data on survival with good neurological outcome and evidence quality for each outcome was very low. This review suggests a potential role for mechanical chest compression devices for in-hospital cardiac arrest, but there is an urgent need for high-quality research, particularly adequately powered randomised trials, to further examine this role.

Funding

KC and JY are supported as NIHR post-doctoral research fellows. GDP is supported as an Intensive Care Foundation Director of Research and as an NIHR Senior Investigator.
Disclosure

This article/paper/report presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Conflict of interest statement

KC, TQ, RL and GDP have received funding to conduct a feasibility randomised controlled trial of mechanical devices for in-hospital cardiac arrest. The institutions of TQ, RL, and GDP have received funding from the National Institute for Health Research to evaluate the LUCAS–2 chest compression device for out-of-hospital cardiac arrest. GDP is editor for Resuscitation. JY and TN have no conflicts of interest to declare.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.resuscitation.2016.03.004

References

